Selección de distribuidor

Selecciona el distribuidor que deseas usar para tu carrito de compras.

Distribuidor

The Global E-waste Monitor 2014: Quantities, Flows and Resources
Voltimum

The Global E-waste Monitor 2014: Quantities, Flows and Resources

Informe de la Universidad de Naciones Unidas (UNU) sobre basura electrónica global (en inglés)

THE GLOBALE-WASTE MONITOR 2014 Quantities, flows and resources

COPYRIGHT AND PUBLICATION INFORMATION Contact information:For enquiries please contact the corresponding author via [email protected] Please cite this publication asBaldé, C.P., Wang, F., Kuehr, R., Huisman, J. (2015), The global e-waste monitor – 2014, United Nations University, IAS – SCYCLE,  Bonn, Germany.  ISBNPrint: 978-92-808-4555-6Electronic: 978-92-808-4556-3 DISCLAIMER United Nations University (UNU) is an autonomous organ of the UN General Assembly dedicated to generating and transferring knowledge and strengthening capacities relevant to global issues of human security, development, and welfare. The University operates through a worldwide network of research and training centres and programmes, coordinated by UNU Centre in Tokyo.  The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations University concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent those of the United Nations University, nor does citing of trade names, companies, schemes or commercial processes constitute endorsement. This  book  is  licensed  by  the  United  Nations  University  under  a  Creative  Commons  Attribution-Noncommercial-Share  Alike  3.0  IGO  License.  Please  take  the  time  to  learn  more  about  Creative Commons.   Your fair use and other rights are in no way affected by the above. 2

3 Authored by: Baldé, C.P., Wang, F., Kuehr, R., Huisman, J.  The Global E-waste Monitor 2014 uantities   ows and resour es

4 Foreword E-waste, or waste electrical and electronic equipment, is an emerging and fast-growing waste  challenge to waste management in both developed and developing countries. Rapid technology innovation and ever-shortening product lifespans are among the factors contributing to the growing amount of e-waste.  Over the past two decades, policymakers, producers and recyclers in various countries have  and  process  it  in  professional  treatment  facilities.  Unfortunately,  despite  these  efforts,  the collection  and  state-of-the-art  treatment  of  e-waste  is  limited,  and  most  nations  are  still without such e-waste management systems. There is a large portion of e-waste that is not being collected and treated in an environmentally-sound manner. Further, some of the world’s  techniques are often used to extract materials and components. These “backyard” techniques pose dangers to poorly protected workers and the local natural environment. Global trading of  electronics  and  substandard  recycling  in  developing  countries  has  led  to  environmental catastrophes in places like Guiyu, China and Agbogbloshie, Ghana, to name two examples.  Many  studies  have  touched  multiple  aspects  of  e-waste,  such  as  pollution  and  toxicity, recycling technologies and best policies for the collection and treatment of this waste stream. However, as of yet there is no study that monitors the global quantity of e-waste by applying a harmonised measurement method for all countries. Many estimated quantities of e-waste  As a worldwide leading institute in e-waste research, the United Nations University (UNU),  monitor  of  quantities  of  global  e-waste  using  a  harmonised  methodology.  The  results  are based on empirical data and provide an unprecedented level of detail. This information gives a more accurate overview of the magnitude of the e-waste problem in different regions. The e-waste  volumes  are  indicative  of  the  recycling  industries’  potential  to  recover  secondary  necessary for policymakers to identify the need for action. By tracking the destinations of the waste stream, this monitor can also provide useful baseline information for establishing the  interventions, such as raising consumer awareness, to appropriately dispose of equipment.    Based  on  the  global  quantity  of  e-waste,  the  resource  potential  of  recyclable  materials, commonly called the “urban mine”, is presented. Similarly, the content of hazardous materials,  and  recycling  industry  to  plan  the  location,  capacity  and  technologies  for  recycling infrastructures.   As  a  whole,  this  monitor  illustrates  the  size  of  the  e-waste  challenge,  the  management progress for establishing the specialized e-waste collection and treatment systems and the 

5 future outlook. The data and information can provide a baseline for national policymakers, such  as  governments,  producers  and  the  recycling  industry,  to  plan  for  take-back  systems. It  can  also  facilitate  cooperation  around  controlling  illegal  trade,  supporting  necessary technology development and transfer, and assisting international organizations, governments and research institutes in their efforts as they develop appropriate countermeasures. This will  health impacts of e-waste. As  a  global  think  tank  and  postgraduate  teaching  organization,  the  UNU  has  a  role  to  play in paving paths towards solutions of the e-waste problem, because it is one of the pressing problems  of  humankind.  UNU-IAS  through  its  Operating  Unit  SCYCLE  plans  to  regularly publish this e-waste monitor and outlook, and also to contribute through further networking, research and training with our sister UN organizations, governments, industry, academia and non-governmental organizations. Kazuhiko Takemoto Director, United Nations University Institute for the Advanced Study of Sustainability(UNU-IAS)

6

7 Table  of  contents ForewordExecutive Summary 1. WHAT IS E-WASTE? 2. HOW TO MEASURE THE E-WASTE FLOWS   2.1 Calculation of sales and e-waste generated  2.2  Framewor  measuring e-waste  ows   2.3 Other information used in this report 3. THE QUANTITY OF E-WASTE WORLDWIDE 4. HOW ARE ELECTRONIC PRODUCTS DISPOSED OF AROUND THE WORLD?   .1.  Scenario 1  O cial ta e- ac  systems   4.2.  Scenario 2: Disposal of e-waste in mixed residual waste   4.3.  Scenario 3: Collection of e-waste outside o cial ta e- ac      systems in developed countries   4.4.  Scenario 4: Informal collection and recycling in developing  countries 5. REGIONAL DETAILS OF E-WASTE MANAGEMENT   5.1  Africa   5.2  Americas   5.3  Asia   5.4  Europe   5.5  Oceania 6. OPPORTUNITIES FOR E-WASTE 7. REFERENCES 8. ABOUT THE AUTHORS 9. APPENDIX   Annex 1 : Domestic e-waste generated per country in 2014   Annex 2 : E-waste collection data from o cial ta e- ac  systems   Annex 3 : Data of e-waste disposal in mixed residual waste   Annex 4 : Classi cation of electrical and electronic e uipment and  e-waste  (UNU-KEYs) 10. ABOUT UNU-IAS-SCYCLE 48 10 14 161819 20 26 283032 34 36 3840424446 48 52 56 60 62687071 74 Page Section

8 Executive  Summary “E-waste is a term used to cover all items of electrical and electronic equipment (EEE) and its parts that have been discarded by its owner as waste without the intent of reuse” (Step Initiative 2014). E-waste, or waste electrical and electronic equipment (WEEE), is a complex and fast-growing waste stream that covers a large variety of products. The composition of this waste stream, that is, its constituents including toxics and its resource potential, varies  miniaturization and replacement, especially for information and communication technology (ICT) products and consumer equipment are fuelling the increase of e-waste. Moreover, more and more products contain a battery or plug, categorising it as EEE, such as intelligent clothes, smart toys and tools, dispensers and ubiquitous medical equipment. From past assessments, it is still unclear precisely how much e-waste is generated and collected in each country and region. Available estimates are either out-dated or impossible to compare across regions due  corresponding impacts and management status on a global scale. This is measured using an internationally-adopted measuring framework that has been developed by the Partnership on Measuring ICT for Development (Baldé et al., 2015). The methodology calculates the amount of e-waste generated from harmonised modelling steps and data sources. The outcomes show an unprecedented level of accuracy and harmonisation across countries and are very useful for international benchmarking. It is estimated that the total amount e-waste generated in 2014 was 41.8 million metric tonnes (Mt). It is forecasted to increase to 50 Mt of e-waste in 2018. This e-waste is comprised of 1.0 Mt of lamps, 6.3 Mt of screens, 3.0 Mt of small IT (such as  mobile  phones,  pocket  calculators,  personal  computers,  printers,  etc.),  12.8  Mt  of  small equipment (such as vacuum cleaners, microwaves, toasters, electric shavers, video cameras, etc.),  11.8  Mt  of  large  equipment  (such  as  washing  machines,  clothes  dryers,  dishwashers, electric  stoves,  photovoltaic  panels,  etc.)  and  7.0  Mt  of  cooling  and  freezing  equipment (temperature exchange equipment).  the large population in both India and China (both of which have national e-waste regulation  of  legislation  does  not  necessarily  imply  successful  enforcement  of  this  legislation  and  the  not cover all e-waste categories as measured in this publication. In some countries, legislation exists for only one type of appliance, or the collection amount is low. Driven by these national laws,  at  least  6.5  Mt  of  e-waste  was  reported  as  formally  treated  by  national  take-back programs and schemes at the global scale (around 15.5 per cent of the e-waste generated in 2014). Through these programs, the highest quality of recycling and safe disposal of e-waste takes place.  Besides national take-back systems, e-waste is also disposed of with mixed residual waste (the waste bin), where it is treated together with other municipal wastes. Disposal of e-waste in mixed residual household waste accounts for 1 to 2 kg per inhabitant in the EU. This fraction is mainly comprised of small equipment, such as mobile phones, lamps, electrical toothbrushes, 

9 toys, etc. In the 28 EU Member States, it is estimated to be 0.7 Mt of e-waste annually. This statistic is unknown for other countries.  For  the  collection  outside  the  take-back  systems,  no  harmonized  data  with  good  regional coverage  could  be  gathered  in  this  edition  of  the  monitor.  In  addition,  the  transboundary  collection  outside  the  take-back  systems  probably  equals  of  the  whole  e-waste  market.  In other developed countries, it can be as large as one third of the e-waste market. The impact  scenario.  The intrinsic material value of global e-waste is estimated to be 48 billion euro in 2014. The material value is dominated by gold, copper and plastics contents. The annual supply of toxins from e-waste is comprised of 2.2 Mt of lead glass, 0.3 Mt of batteries and 4 kilo tonnes (kt) of  Whether the raw materials are recycled or the toxins lead to actual harmful emissions largely depends on their collection and treatment manners. As mentioned before, only 6.5 Mt of the 41.8 Mt of e-waste are documented and recycled with the highest standards. Thus, the full  for policymakers, like those in international regimes, governments and recycling industries, to document e-waste collected and to plan the location, capacity and technologies for creating the necessary recycling infrastructure.

10 Photo Credit: Lowette

11 1. What is e-waste? E-waste is a ter  used to  o er all ite s o   ele tri al and ele troni  e ui ent  EEE  and its  arts that ha e been dis arded by its owner as  waste without the intent o  re-use.

Landfill Trash Incinerator Trash Lamps Screens Temp.   Exchange   eq. push Recycl ing E-waste  is  a  term  used  to  cover  all  items  of electrical  and  electronic  equipment  (EEE)  and its parts that have been discarded by its owner as  waste  without  the  intent  of  re-use  (Step Initiative 2014). It is also referred to as WEEE (Waste  Electrical  and  Electronic  Equipment), electronic waste or e-scrap in different regions. E-waste  includes  a  wide  range  of  products,  – almost  any  household  or  business  item  with circuitry  or  electrical  components  with  power or battery supply. six categories and therefore also e-waste:  • Temperature exchange equipment. Also more commonly  referred  to  as,  cooling  and  freezing equipment.  Typical  equipment  is  refrigerators,  What is e-waste? freezers, air conditioners, heat pumps. •  Screens,  monitors.  Typical  equipment comprises  televisions,  monitors,  laptops, notebooks, and tablets.  • Lamps. Typical equipment comprises straight  lamps and LED lamps). •  Large  equipment.  Typical  equipment comprises  washing  machines,  clothes  dryers, dish  washing  machines,  electric  stoves,  large printing  machines,  copying  equipment  and photovoltaic panels. •  Small  equipment.  Typical  equipment comprises  vacuum  cleaners,  microwaves, ventilation equipment, toasters, electric kettles, electric  shavers,  scales,  calculators,  radio  sets, 

Next  Country Small    IT Small    Equipment Large    Equipment Trade video  cameras,  electrical  and  electronic  toys, small  electrical  and  electronic  tools,  small medical  devices,  small  monitoring  and  control instruments). •  Small  IT  and  telecommunication  equipment. Typical  equipment  comprises  mobile  phones, GPS,  pocket  calculators,  routers,  personal computers, printers, telephones). For each category, its original function, weight, size,  material  composition  differ.  These  end-of-life  attributes  determine  that  each  category has different waste quantities, economic values, as  well  as  potential  environmental  and  health impacts  through  inappropriate  recycling. Consequently, the collection and logistic means and recycling technology are different for each category  in  the  same  way  as  the  consumers’ attitude  in  disposing  of  the  electrical  and electronic equipment. The  environmental  issues  associated  with e-waste  arise  from  the  low  collection  rates,  in  drawers,  cabinets,  cellars,  attics  etc.  or disposes those off through the normal household  is  where  waste  ends  up  in  the  undesirable channels and destinations, such as substandard treatment  in  developing  countries.  In  an  ideal  environmental  impacts  can  be  reached  when e-waste is collected and treated in the state-of-the-art  facilities.  However,  imperfect  disposal scenarios  existed  and  still  exist,  and  cause  the e-waste problems nowadays. 

14

15 2. How to measure  the e-waste  ows The most  ommon dis osal s enarios around the  world are measured in a harmonised  ramewor .  This  a tures the most essential  eatures o  the  e-waste dynami s.

Methodology Comtrade   Database Trade of commodities per country and year Sales is determined Datasets Sales Import Export = - Amount of e-waste generated per: country, year, & product Statistical Correction Link  to 54   Categories Outlier detection InternationalComparison Extrapolation of timeseries to 1980 Adjusted  Sales  data Product  lifespan   Product Lifespan + 12% 10% 8% 6% 4% 2% 0 Product lifespan (years) 5 10 15 20 25 30 Washing Machine Flat Panel TV Laptop Airconditioner Discar ding Pr obability Product  Lifespan Trade in HS codes per country extracted(1995-2002 of 175 countries) 2.1  Calculation of Sales and e-waste generated  The calculation of e-waste generated is based on empirical data, a model and statistical routines. The data in this report was obtained and treated using the following steps: 1.  Selecting  the  relevant  codes  that  describe EEE in the Harmonized Commodity Description and  Coding  System  (HS).  The  product  scope  is shown in Annex 4. 2.  Extracting  the  statistical  data  from  the  UN Comtrade  database.  This  was  done  for  175 countries,  260  HS  codes  for  a  time  series  of 1995 to 2012. 3.  For  the  European  Union,  the  international trade statistical data was extracted from Eurostat in the eight-digit combined nomenclature (CN) codes.  The  CN  is  the  more  detailed  European version  of  the  six-digit  HS  codes.  Domestic production  data  was  also  extracted  from Eurostat.  4.  Converting  the  units  to  weight  using  the average weight data per appliance type.  16

17 5. Calculating the weight of sales for 54 grouped product  categories  (UNU-KEYs,  see  Annex  4) by  using  the  apparent  consumption  approach: Sales  =  Import  –  Export.  For  28  EU  Member States: Sales = Domestic Production + Import – Export was used.   6.  Performing  series  of  automated  outlier analysis  on  the  sales  data.  This  is  needed  to detect values that were too low (due to the lack of domestic production data in some countries were  domestic  production  is  relatively  large) or  too  high    (due  to  misreporting  of  codes  or units). Those detected entries are replaced with more realistic sales values either from the time series of the origin country or from comparable countries.  These  statistical  routines  lead  to  a harmonised  dataset  with  a  similar  scope  and consistent  sales  for  a  country  based  on  their own trade statistics.  7. Determining the e-waste generated by country by applying the “Sales – Lifespan Distribution” method  with  empirical  lifespan  data.  Lifespan data is obtained from the 28 EU Member States using  the  Weibull  distribution  (Magalini  et  al. 2014; Baldé et al. 2015).  The lifetime assumes, mathematically, the form of  the  Weibull  function,  with  parameters  of scale and shape. The scale parameter, which is  to  real  data  in  EU  in  order  to  get  the  closest real  life  characteristics.  The  average  age  of household  EEE  stocks  and  the  average  age  of discarded  e-waste  enabled  the  construction  of  the  dormant  time  of  electronic  equipment  on storage. The e-waste generated results for each country are presented in Annex 1. A full overview of the methodology can be found in the guidelines on e-waste statistics from the Partnership on Measuring ICT for development  and the report on the common methodology that was  developed  for  the  European  Commission (Magalini et al. 2014; Baldé et al. 2015). Date Quality  or Measurin  E-waste  enerated The  outcomes  of  the  e-waste  generated  bear some  limitations.  First  of  all,  the  domestic production  was  not  considered  for  countries outside  the  European  Union.  This  is  then corrected with the statistical routines that detect and replace outliers. This accuracy is estimated to be ± 10 per cent. Thus, the presented e-waste generated  data  is  expected  to  have  the  same accuracy. The lifetimes were also only known in the countries of the European Union (Magalini et al. 2014), and these were used for the other countries.  This  was  also  an  assumption  that inevitably  leads  to  some  uncertainty.  This uncertainty is expected to be also ± 5 to 10 per cent of the e-waste generated. 

18 The  internationally-adopted  measurement framework  for  e-waste  statistics  has  been developed  in  the  context  of  the  Partnership Measuring  ICT  for  Development  (Baldé  et al.,  2015).  The  framework  captures  the  most important  elements  of  the  e-waste  disposal scenarios around the world so as to measure the dynamics of e-waste in a consistent manner.  The  measurement  framework  starts  with sales  of  EEE.  After  the  equipment  has  been  some  time.  The  time  the  equipment  spends  called  the  product’s  “lifetime”  or  “residence time”.  This  includes  the  exchange  of  second-hand  equipment  between  households  and businesses. The residence times of each product should  ideally  be  determined  empirically per  product.  After  a  certain  residence  time, the  product  is  disposed  of  (becomes  waste). This is referred to as “e-waste generated”. It is the  annual  supply  of  domestically  generated e-waste prior to collection and without imports. The e-waste generated can be collected one of in four scenarios, which will be described in more detail in chapters 4.1 to 4.4 respectively:   2.2  Framework measuring e-waste flows - Scenario 2: The e-waste can also end up in non-separately  collected  household  waste  (waste bin). - Scenario 3: The “collection outside formal take-back systems” in developed countries  -  Scenario  4:  The  ‘‘collection  outside  formal take-back systems” in developing countries  In practice, transboundary movement of e-waste takes  place  from  developed  to  developing countries, most commonly between Scenarios 3 and 4.  Sales of  electrical and  electronic  equipment In use (stock) Households,  businesses,  and the  public sector E-waste  generated Scenario 1: Official take  back system Scenario 2: Waste Bin Scenario 3 & 4: Trade (legal  and illegal)  outside of the  official take  back systems Lifetime

19 2.3  other  information  used  in  this  report Other information and data sources used in this report include: • The quantity of e-waste generated is shown in Annex 1 amount of e-waste under national legislation or compliance scheme per country (Annex 2) •  Data  of  e-waste  in  waste  bins  from  sorting analysis (Annex 3) • Indicator on the world population covered by e-waste  legislation  is  derived  from  the  data  in Annex 1, for the countries that are indicated by having national e-waste legislation.  •  Material  composition  per  product  category (Wang 2014) • Commodity price for selected materials • Socio-economic data per country (population and Purchasing Power Parity)

20

21 3. The  uantity o   e-waste worldwide This  ha ter  resents the main o er iew about the  lobal e-waste  eneration and  olle tion. 

41.8 million    tonnes of   e-waste   was  generated in  2014 That's   approximately 4    out  of  every   7   people 4   Billion  people  are   covered   by   national   legislation  and   only  The global quantity of e-waste generation in 2014 was around 41.8 Mt. In 2014, approximately 4 billion people were covered by national e-waste legislation, though  legislation  does  not  necessarily  come  together  with  enforcement. Driven  by  these  national  laws,  around  6.5  Mt  of  e-waste  was  reported  as formally treated by national take-back systems (Scenario 1). Not all e-waste laws  have  the  same  scope  as  the  comprehensive  scope  in  this  report.  In total, 0.7 Mt of e-waste is thrown into the waste bin in the 28 EU Member States (Scenario 2). The amount of e-waste that is disposed of in waste bins is unknown for other regions. The quantities of the collection outside formal take-back  systems  (Scenarios  3  and  4)  are  not  documented  systematically.  movement of e-waste (mostly from developed to developing countries) are unknown.  22 Worldwide  disposal  of  e-waste Overview

at  least 6.5   million   tonnes are   collected    by   official take-back   systems Municipality Private  collection Companies collection stores in   the   European   Union    0.7   million   tonnes    will   end   up   inwaste    bins  Outside   official take-back   systems for more information see scenario 2 for more information see scenario 1 for more information see scenarios 3 & 4 In the EU-28, 0.7 million tonnes end up in waste bins. This is 8% of the total e-waste in EU-28. Quantities for the rest of the world are unknown. 1.  Collection outside official take-back systems  in developed countries is still unknown 2.  Transboundary movement is still unknown 3.   Informal collection systems in developing  countries are still unkown 23

Lamps Screens Small   IT 1.0 Million   tonnes Small   Equipment 12.8 Million   tonnes Large    Equipment 11.8 Million   tonnes 6.3 Million   tonnes Temp.   exchange  eq. 7.0 Million   tonnes 3.0 Million   tonnes 24 Worldwide  disposal  of  e-waste The global quantity of e-waste in 2014 is comprised of 1.0 Mt lamps, 3.0 Mt of Small IT, 6.3 Mt of screens and monitors, 7.0 Mt of temperature exchange equipment (cooling and freezing equipment), 11.8 Mt large equipment, and 12.8 Mt of small equipment. The amount of e-waste is expected to grow to 49.8 Mt in 2018, with an annual growth rate of 4 to 5 per cent.  Overview Total  E-waste  per  category  in  2014 Global quantity of e-waste generated Year E-waste generated (Mt) Population (billion) E-waste generated (kg/inh.) 2010 33.8 6.8 5.0 2011 35.8 6.9 5.2 2012 37.8 6.9 5.4 2013 39.8 7.0 5.7 2014 41.8 7.1 5.9 2015 43.8 7.2 6.1 2016 45.7 7.3 6.3 2017 47.8 7.4 6.5 2018 49.8 7.4 6.7 Data 2015 onwards are forecasts

1.9   Mt 11.7   Mt 16.0   Mt 11.6   Mt 0.6  Mt 1.7 kg/inh. Oceania Europe Asia Americas Africa 12.2 kg/inh. 3.7 kg/inh. 15.6 kg/inh. 15.2 kg/inh. 0.1 Mt 0.5 Mt 0.3Mt 0.6 Mt 0.1 Mt 0.3 Mt 0.2 Mt 3.3 Mt 1.7 Mt 3.6 Mt 0.8 Mt 2.0 Mt 0.5 Mt 4.1 Mt 2.5 Mt 5.1 Mt 1.1 Mt 2.7 Mt 0.2 Mt 3.6 Mt 1.7 Mt 3.3 Mt 0.9 Mt 1.9 Mt 0.01 Mt 0.14 Mt 0.10 Mt 0.19 Mt 0.05 Mt 0.08 Mt 25 E-Waste  Generation  per  category,  continent  and  per  inhabitant Most of the e-waste was generated in Asia: 16 Mt in 2014. This was 3.7 kg for each inhabitant. The highest per inhabitant e-waste quantity (15.6 kg/inh.) was generated in Europe. The whole region (including Russia) generated 11.6 Mt. The lowest quantity of e-waste was generated in Oceania, and was 0.6 Mt. However, the per inhabitant amount was nearly as high as Europe’s (15.2 kg/inh.). The lowest amount of e-waste per inhabitant was generated in Africa, where only 1.7 kg/inh. was generated in 2014. The whole continent generated 1.9 Mt of e-waste. The Americas generated 11.7 Mt of e-waste (7.9 Mt for North America, 1.1 Mt for Central America, and 2.7 Mt for South America), which represented 12.2 kg/inh.

26

4. How are ele troni   rodu ts dis osed o   around the world? Most en ironmental dama e and health im a ts  related to e-waste arise  rom im ro er  olle tion  and treatment a roa hes. Four ty i al dis osal  s enarios  or the  olle tion  trade and treatment o   e-waste are summarized.  27

data based on offically reported data and normalized to e-waste generated Regulated Waste Collection Most commonly collected e-waste  categories: large equipment, small  equipment, lamps, screens, small IT  and temperature exchange  equipment. Municipa Retail Store +- 12% - US / Canada +- 40% - EU +- 1% - Australia +- 28% - China+- 24% - Japan National laws differ in  product scope In this scenario, the e-waste is mostly collected by:• Municipalities (curbside collection, municipal collection points)• Retailers (stores, super markets)• Commercial pick-up services Commercial pick  up In this scenario, usually under the requirement of national e-waste legislation, e-waste is collected by designated organizations, producers and/or by the government. This happens via retailers, municipal  collection  points  and/or  pick-up  e-waste  is  state-of-the-art  treatment  facilities,  which  recover  the  valuable  materials  in  an environmentally-sound  way  and  reduce  the negative impacts.  In  the  European  Union,  roughly  40  per  cent  reportedly treated in this manner; in the United States and Canada, the level is around 12 per cent;  4.1.  Scenario  1:   official  take-back  systems 28

State of the art recycling involves the following steps •  Removal of toxic components and materials  •  Pre-processing:   •  Manual dismantling   •  Mechanical separation   (shredding, breaking, sequential sorting) •  End-processing   •  Base metal refinery   •  Precious metal refinery   •  Plastics recycling   •  Batteries recycling   •  Other component treatment   •  Disposal of non-recyclable residues ality Fe Al Ag Pd Au Cu Plastics State-of-the-art   Recycling Residuals will go to  landfill or incineration. for China and Japan, it is around 24 to 30 per cent and in Australia, is around 1 per cent. That said, the  scope  of  collected  products  differs  among the countries, depending on the priority setting at the national level. Usually, product categories  elements  are  collected,  such  as  temperature exchange  equipment  (cooling  and  freezing equipment), screens and monitors, lamps, large equipment and small IT and telecommunication equipment. This disposal scenario exists in both developed and developing countries.  29

Trash to Incinerator / Landfill Often, the trash is brought straight to  landfills or incineration plants. In  general, this leads to a loss of  potential resources. However, in  some countries, the trash is sorted  for e-waste. Trash Waste Bin Small equipment is most  often thrown into the  normal dustbins, such as  lamps, USB-sticks,  phones, electronic toothbrushes, etc. In this scenario, consumers directly dispose of e-waste  through  the  normal  dustbins  together with  other  types  of  household  waste.  As  a consequence,  the  disposed  of  e-waste  is  then treated  with  the  regular  mixed  waste  from households.  Depending  on  the  region,  it  can  incineration  with  a  low  chance  of  separation  of  these  two  destinations  is  regarded  as  an appropriate technique to treat e-waste, because it  leads  to  resource  loss  and  has  the  potential to  negatively  impact  the  environment.  The  and  if  e-waste  is  incinerated,  emissions  into air  occur.  This  disposal  scenario  exists  in  both  4.2.  Scenario  2:  Disposal  of  e-waste  in  mixed residual  waste  30

2.3 kg/inh - Netherlands 0.7 Mt - EU 1.2 kg/inh - Sweden 1.0 kg/inh - France 1.4 kg/inh - Germany 1.0 kg/inh - Italy Incinerator Landfill Toxins In landfills... Toxins The e-waste that is end-treated in  an incinerator leads to greenhouse  gas emissions and mercury  emissions. Dioxins can be released  when PVC parts are incinerated at  a low temperature. Toxins Toxins In landfills... In landfills Toxins The e-waste that is  end-treated in a landfill leads  to leaching of toxic metals  and chemicals into the soil. E-waste disposal in mixed  residual waste in the EU. developed  and  developing  countries.  Products commonly  thrown  away  in  dustbins  include small equipment, small IT equipment and lamps.  In most developing countries, valuable e-waste is  hardly  seen  in  dustbins,  but  invaluable e-waste  like  lamps  and  small  products  can  be easily  disposed  of  in  dustbins  and  then  sent  statistics  in  countries  about  the  quantity  of e-waste  that  is  disposed  with  mixed  waste  in dustbins. For all data that was found, about 1 to 2 kg per inhabitant was disposed in the waste bin  in  Europe.  This  represents  roughly  8  per cent  of  the  total  European  e-waste  generation.  data.  31

4.3.  scenario  3:  Collection  of  e-waste  outside  official  take-back  systems  in  developed  countries In developed countries, e-waste is also collected by  individual  waste  dealers  or  companies  and then traded through various channels. Possible destinations for e-waste in this scenario include metal  recycling,  plastic  recycling,  specialized e-waste  recycling  and  also  export.  Usually, e-waste handled in this scenario is not reported  established  take-back  systems  (Scenario  1). E-waste  categories  that  are  typically  handled by  the  informal  collection  are  temperature  exchange equipment, large equipment, screens and IT products.  The main feature of this scenario is that e-waste is traded freely, and usually, its quantity is not systematically  documented  or  reported  to  framework  or  requirements.  In  this  scenario, e-waste is often not treated in the state-of-the-art facilities, and there is a potential that e-waste is shipped off to developing countries. There is a  Private  collection company In this scenario, e-waste is collected by individual collectors or private companies.  Typical e-waste categories handled by the informal collection are temperature exchange equipment, large equipment, screens and ITequipment. 32

substantial  amount  of  e-waste  being  collected in  developed  countries  and  then  traded  to developing  countries  for  further  treatment. The  demand  for  inexpensive  second-hand equipment and raw materials in less-developed regions is the biggest driver for the interregional and global trade of e-waste.  Trading of second hand equipment is legal only if  it  is  allowed  by  both  sending  and  receiving countries. However, the dumping of waste occurs  exists  in  practice,  is  illegal.  If  the  exporting  exports  of  hazardous  waste  must  comply  with the  Basel  Convention.  The  Basel  Convention is  meant  to  prevent  developed  countries  from illegally dumping waste in developing countries, where  recycling  infrastructure  is  typically absent.  Exports 2nd hand market After collection, it is either refurbished for resale, or it is pre-processed to separate materials. Then the remaining fractions are sent to refinery plants or export.  ± 10 % in   Belgium ± 30 % in   the   Netherlands ± 10 % in   Great   Britain ± 20% in   France ± 30% In  italy ± 5 % in  Belgium ± 10 % in  the  Netherlands ± 5 % in  Great  Britain ± 5 % in  Germany The e-waste can be also recycled  mixed with other recyclables. For  instance, together with with metal  scrap, or plastic scrap. The exports for reuse have been  estimated in only a few countries  and are based on individual reports.  Data is normalized to the total  amount of e-waste generated. The recycling outside official take-back  systems has been estimated in only a few  countries and are based on individual reports.  Data is normalized to the total amount  of  e-waste generated. State-of-the-art   Recycling 33

4.4.  scenario  4:  Informal collection and recycling in developing countries In  most  developing  countries,  there  are  an enormous  number  of  self-employed  people engaged  in  the  collection  and  recycling  of e-waste.  They  usually  work  on  a  door-to-door  basis  to  buy  e-waste  from  consumers  at home, and then they sell it to refurbishers and recyclers.  These  types  of  informal  collection activities provide the basic means necessary for many unskilled workers to pay for their living. Apart from domestic collection, the demand for  inexpensive second-hand goods and secondary materials  is  an  incentive  of  to  import  e-waste from  developed  countries  (as  explained  in Scenario 3).  After  informal  collection,  when  electronic products do not have any reuse value, they are mostly recycled by through “backyard recycling” or  substandard  methods,  which  can  cause severe damage to the environment and human  2nd handmarket Imports It is estimated that around 0.1 Mt of e-waste is imported into Nigeria in 2010. Another 0.1 Mt of second hand (repairable) equipment was imported into Nigeria (Ogungbuyi et al. 2012) In this scenario, e-waste is usually collected by self-employed peddlers, who usually buy e-waste from consumers.  Imported equipment  can  be used  in households, or  sent straight to scrap-yards Imports of hazardous waste have  to comply with the Basel  Convention. The Basel  Convention should prevent illegal  import of waste from developed  countries. 34

health. Such substandard treatment techniques include  open  burning  to  extract  metals,  acid leaching  for  precious  metals,  unprotected melting  of  plastics  and  direct  dumping  of hazardous  residuals.  Lacking  legislation, treatment standards, environmental protection measures  and  recycling  infrastructure,  are  the main reasons that e-waste is recycled in a crude manner. Typical e-waste categories handled by the  informal  collection  include  temperature  exchange equipment, large equipment, screens and IT products. Fe Al Ag Pd Au Cu Strippedfor    parts Plastics After collection, e-waste is usually manually dismantled using simple tools. Most recycable parts are then recycled by the “backyard recycling” or substandard methods. This informal recycling activity can cause great damage to human health and the environment.  In Nigeria, 0.36 Mt of  e-waste is recycled  using inferior standards.  Of this e-waste it is  estimated that 0.1 Mt is  directly imported  (Ogungbuyi et al. 2012) Low temperature burning causes the emission of dioxins from PVC components. Also waste material is just dumped into nature, and in water bodies  Some recycling takes place, however, without taking the environment and human health into consideration. The recycling yield is also inferior to state-of-the-art recycling 35

36 Photo Credit: NASA

37 5. Re ional  details o  e-waste  mana ement This  ha ter  resents the details in ea h re ion   on national e-waste  uantities and mana ement  status.

In Africa, the total e-waste generation was 1.9 Mt in 2014. Only Cameroon and Nigeria have enforced national e-waste related legislation, while Ghana, Ethiopia and Kenya still have legislation pending approval. The top three African countries with the highest e-waste generation in absolute quantities are Egypt (0.37 Mt), South Africa (0.35 Mt) and Nigeria (0.22 Mt). The top three African countries with the highest e-waste generation in relative quantities are Equatorial Guinea (10.8 kg/inh.), Seychelles (10.9 kg/inh.) and Mauritius (9.3 kg/inh.). In contrast with these relatively wealthy countries, the whole continent only generates 1.7 kg/inh. of e-waste    domestically (excluding imports) annually. Very few official government reports are available on e-waste management in Africa. On the continent, the e-waste challenge is on the political agenda the past couple of years, but there is generally a lack of e-waste management infrastructure, which is reflected by the absence of e-waste management laws. Here most of the generated e-waste is either stored in households, treated or dumped, according to the informal treatment sector described in Disposal Scenario 4 in Section 4.4. Africa, particularly the western Africa, becomes the dumping destination for e-waste from various regions of the world. This is because the East and Southern African regions have gradually put measures to prevent the dumping of e-waste, and it started to take effect. Illegal import of e-waste or used electronics from all over the world is a major source of e-waste in countries like Ghana and Nigeria. This is driven by the demand of inexpensive EEE and secondary materials, as well as cheap dumping prices compared to the treatment with stricter standards in the export countries. The recycling activities of e-waste in Africa are usually carried out on an informal basis, often involving open burning in unmonitored dumpsites or landfills. This rudimentary recycling has caused substantial damage to the health of scavengers and local environment. If properly regulated and managed, recycling of e-waste can help to develop local economies and reduce poverty. However, it demands the strong cooperation in both the developing and developed world, in order to make sure that waste legislation and stringent compliance  5.1  Africa are adopted and enforced.  In Mauritius, which is a small, relatively wealthy island, it was estimated that 9.3 kg/inh. of e-waste was generated in 2014. In 2011, it was found that 1.5 kg/inh. of e-waste was transferred at waste transfer stations mixed with the other wastes. Mauritius does not have a regular separate collection system for e-waste. Due to absence of this, most households store the e-waste in their homes. It was found in a consumer survey that 42 kg of e-waste per household was stored waiting to be disposed or collected (Africa Institute 2012). There have been many ad hoc e-waste collection campaigns, where the items are sent to dismantlers who recover materials that can recycled locally (mainly metals and plastics) and export the hazardous components for treatment abroad.  In Ethiopia, the use of many types of EEE is mostly restricted to urban centres, as the lack of electricity and purchasing power in rural communities often hampers the prevalence of devices such as TVs, refrigerators and computers. Nevertheless, these rural communities do make use of battery-powered devices such as torchlights and radios. Thus, e-waste generation in Ethiopia reflects the existing rural-urban disparities with small e-waste volumes in rural areas (predominantly waste batteries, radios and torch lights) and a much broader e-waste mix in urban communities. E-waste is not yet a major source of environmental pollution, and has not caused major health effects in Ethiopia. Compared to other African countries, such as Ghana and Nigeria, the volume of e-waste is still quite moderate. There are no indications that unsound recycling and disposal are practiced systematically. Although there are some hints that e-waste is disposed of in an uncontrolled manner, the majority of obsolete EEE is currently stored within government buildings, offices, international organizations and households or awaiting future solutions (Manhart et al. 2013). While there is no fully functional e-waste management system in place yet, some promising efforts serve as starting points for the creation of environmentally-sound e-waste management systems.  38

Domestic   E-waste  generated  in  africa 0 to 1 kg / inh. 1 to 3 kg / inh. 3 to 6 kg/inh. 6 to 10 kg/inh. 10 + kg/inh. Legend

In the Americas, the total e-waste generation was 11.7 Mt in 2014. The top three countries in the region with the highest e-waste generation in absolute quantities are: the United States (7.1 Mt), Brazil (1.4 Mt) and Mexico (1.0 Mt). The top three countries in the Americas having the highest e-waste generation in relative quantities are: the United States (22.1 kg/inh.), Canada (20.4 kg/inh.) and the Bahamas (19.1 kg/inh.).  In Central America, only Costa Rica has implemented national legislation to take back and recycle e-waste. In South America, Peru, Bolivia and Ecuador already have national e-waste legislation, while Brazil and Chile have national laws pending approval. In North America, there are no federal mandates, but there are state-level e-waste laws in the United States, and 65 per cent of the U.S. population was covered by a state e-waste recycling law in 2013 (Electronics TakeBack Coalition 2014). Nine out of 14 provinces in Canada also have e-waste related legislation (covering 94 per cent of the population). In the United States, the 1 million tonnes of officially reported collected e-waste only represents 15 per cent of the total e-waste generated in 2012 (US EPA 2014). The low collection rate could be partly a scope issue, as not all categories of e-waste have been documented in governmental statistics. Nevertheless, there is also a lot of room to improve the official collection rates through formal take-back systems (Disposal Scenario 1 in Section 4.1). It is very important to track the e-waste being collected and treated outside the official take-back and treatment systems (Disposal Scenario 3 in Section 4.3), as it is likely that part of the e-waste collected by this approach is exported, as the United States did not ratify the Basel Convention that restricts the transboundary movement of international hazardous waste. In 2010, it was estimated that 8.5 per cent of the collected units of computers, TV’s, monitors, and mobile phones were exported as whole units (Duan et al, 2013). This was 26.5 kt in weight. Most larger electronic items, especially TVs and monitors, were exported overland or by sea to destinations such as Mexico, Venezuela, Paraguay and China, while used computers, especially  5.2  Americas laptops, were more likely to go to Asian countries. The main destinations for mobile phones were Hong Kong and countries in Latin America and the Caribbean.  In the United States, there are two domestic third-party certification systems for e-waste recyclers: R2 and E-Stewards. The electronics recycling industry is increasingly embracing these programs to improve their environmental performances and reduce human health impacts from improper recycling. Out of the 21 countries in Latin America, e-waste regulations are in place only in Mexico, Costa Rica, Colombia, Peru, Argentina, and Ecuador. But in the absence of national strategies, most of them only operate at the local level. Such local laws stipulate that e-waste must be sent to an environmentally-responsible destination when disposed of, and specific funding might be used to finance selective waste collection projects. Only Brazil, Mexico and Costa Rica have R2-certified recycling facilities, which is an internationally recognized standard. The certification of recyclers has been limited due to lack of incentives from legal frameworks, awareness of pollution control during recycling as well as the lack of training opportunities for certification. 40

Domestic   E-waste  generated  in  Americas 0 to 4 kg / inh. 4 to 8 kg / inh. 8 to 14 kg / inh. 14 to 20 kg / inh. 20 + kg / inh. Legend

In Asia, the total e-waste generation was 16.0 Mt in 2014. China, India, Japan, Hong Kong, South Korea, Viet Nam, Bhutan, Cyprus and Turkey have national e-waste related laws. The Philippines and Jordan have regulations pending approval.  The top three Asian countries with the highest e-waste generation in absolute quantities are China (6.0 Mt), Japan (2.2 Mt) and India (1.7 Mt). The top three Asian regions or countries having the highest e-waste generation in relative quantities are: Hong Kong (21.5 kg/inh.), Singapore (19.6 kg/inh.) and Brunei (18.1 kg/inh.). China plays a key role in the global EEE industry, including the manufacturing, refurbishment, and reuse of EEE and recycling of e-waste. Under the progressive development of pilot projects and domestic e-waste legislation over the past five years, the formal e-waste recycling industry in China has shown considerable growth in both treatment capacity and quality. However, due to a range of social and economic factors, the informal sector continues to play a major role in the collection and recycling of e-waste, and informal recycling often leads to detrimental effects on the environment and the health and safety of workers and local communities (Scenario 4 in Section 4.4). The growth of the formal sector is important for lessening the environmental and health impacts of e-waste treatment. In the coming years, the formal and informal sectors will both continue to operate. In China, national e-waste legislation manages the collection and treatment of TVs, refrigerators, washing machines, air conditioners and computers (desktop and laptops).  In 2013, China officially collected and treated around 1.3 Mt of these five types of e-waste, which was 28 per cent of the total e-waste generated for all categories (Wang et al. 2013).  For Japan, six products, namely air conditioners, TVs, personal computers, washing machines, refrigerators and mobile phones, are regulated. This is nearly 40 per cent of the e-waste generated for all categories investigated in this report. Japan is an early adopter in the development and enforcement of a legal mechanism for e-waste. Japan was one of  5.3 Asia the first counties worldwide to implement an EPR (Extended Producer Responsibility) based system for e-waste, largely building on the strong existing framework for solid waste management. As a result, not only is there a strong legal framework, it is also backed by an advanced collection and take-back system and processing infrastructure. The country has different laws for different products, some with compulsory recycling targets, with other products falling under voluntary initiatives.  It is reported that 556 kt of e-waste was officially collected and treated in Japan in 2013 (AEHA 2013), which is roughly 24 per cent of the total e-waste generated that year. 42

Domestic   E-waste  generated  in  Asia 0 to 2 kg / inh. 2 to 5 kg / inh. 5 to 10 kg / inh. 10 to 17 kg / inh. 17 + kg/inh. Legend

In Europe, the total e-waste generation was 11.6 Mt in 2014. The European countries with the highest e-waste generation in absolute quantities are Germany (1.8 Mt), the United Kingdom (1.5 Mt), France (1.4 Mt) and Russia (1.2 Mt). The top three regions or countries with the highest e-waste generation in relative quantities are Norway (28.3 kg/inh.), Switzerland (26.3 kg/inh.) and Iceland (26.0 kg/inh.). In 2012, only 3.2 Mt of e-waste was officially collected in the 28 Member States of the European Union, whereas 9 Mt of e-waste was generated in 2012 in this region. The European Union is one of the few regions in the world where there is uniform legislation regarding the collection and processing of e-waste. This is formulated in the WEEE Directive. The successor of the WEEE Directive will come into force in 2019 (European Union 2012). In here, one of the targets is to collect 85 per cent of generated e-waste. In practice, most Member States do not reach that collection level yet. Only Sweden, Denmark and Bulgaria currently collect more than 60 per cent of their e-waste generated. In practice, around 8 per cent of e-waste is discarded in the waste bin (see Scenario 2 in Section 4.2, and data in Annex 3), and part of the e-waste stream is mixed and recycled together with metal scrap, thus recycled outside the official take-back systems (Scenario 3 in Section 4.3). This is estimated to account for about 20 per cent of the e-waste generated in France (Monier et al. 2013), about 30 per cent of the e-waste generated in Italy (Magalini et al. 2012), the Netherlands (Huisman et al. 2012) and Great Britain and about 10 per cent of the e-waste generated in Belgium (WRAP 2012) and (Wielenga et al. 2013). Finally, the e-waste can be exported for reuse. Although this has a higher priority in the waste treatment hierarchy, these exports can lead to improper recycling in the destination countries. This is estimated to be about 10 per cent of the e-waste generated in Austria and the Netherlands and about 5 per cent of the e-waste generated in Great Britain, Belgium and Germany (Baldé et al. 2014).  The Balkan region is often regarded as the destination for e-waste disposal from the developed world  5.4  Europe (Anthouli et al. 2013). The practices for dealing with locally-generated WEEE are unsatisfactory, which lead to a loss of secondary resources and damages the environment. National legislation on e-waste management has been put in force in five countries of this region: Montenegro, Macedonia, Serbia, Bosnia and Herzegovina. There is no national legislation tackling e-waste in Kosovo. However, the western Balkans region has not implemented an effective e-waste take-back system like the EU Member States. Further development in collection schemes and recycling infrastructure is needed in this region. The situation in Russia and Belarus, Kazakhstan, Armenia, Kirgizstan is not quite clear. So far, they do not have any e-waste legislation or management system in place. However, in late December of 2014, the Russian  Duma (the parliament) held a second discussion over the bill concerning the production and consumption waste. During this disucssion, EPR (Extended Producer Responsibility) was introduced, and although this does not cover e-waste specifically, the potential new law is considered a first step in the right direction. Different inter-agency working groups on regulations are now working towards an implementation of the law. 44

Domestic   E-waste  generated  in  Europe 0 to 5 kg / inh. 5 to 10 kg / inh. 10 to 15 kg / inh. 15 to 20 kg / inh. 20 to 25 kg / inh 25 + kg / inh. Legend

In Oceania, the total e-waste generation was 0.6 Mt in 2014. The top three countries with the highest e-waste generation in absolute quantities are Australia (0.47 Mt), New Zealand (0.09 Mt) and Papua New Guinea (0.0008 Mt). The top three regions or countries with the highest e-waste generation in relative quantities are Australia (20.0 kg/inh.), New Zealand (19.0 kg/inh.) and the Marshall Islands (5.5 kg/inh.).  Only Australia has a national regulation regarding the disposal of end-of-life computers and television units. In Australia, waste management is primarily the responsibility of state and territorial governments and, through them, local governments. “The Product Stewardship Act 2011” was enacted in 2011, which provides a legislative framework for national product stewardship schemes. The Product Stewardship (televisions and computers) Regulations were made in 2011, establishing the National Television and Computer Recycling Scheme. The regulations require all importers and manufacturers of above threshold volume of televisions and computers to join and fund an approved co-regulatory arrangement. The regulations require the industry to fund collection and recycling activities to meet progressively increasing annual recycling targets, set as a proportion of the estimated total television and computer waste generation in Australia. These targets started at 30 per cent in 2012–13 and will increase to 80 per cent by 2021–22 (Australian government, 2014). Disposing of mercury-containing lamps is primarily a state and local government responsibility in Australia; there is no national legislation on collecting and recycling lamps. Landfill disposal of large amounts of mercury-containing lamps is forbidden in some states. There is a national voluntary scheme for recycling mercury-containing lamps from the commercial and public lighting sectors (Australian government 2014).  During 2012 and 2013, 40,813 tonnes of waste televisions and computers were recycled in Australia, which was equivalent to 98.8 per cent of the predefined national recycling target (41,327 tonnes for two types of waste products) (Australian government 2014). However, this collected amount is only 8.7 per cent the total  5.5 Oceania amount of e-waste generated for all product categories.  In New Zealand, most e-waste is still going to landfill. E-waste is still classified as a non-priority waste stream in New Zealand. Therefore, there is no restriction on e-waste sent to landfill, and there is no national legislation to regulate the collection and recycling of e-waste (Government of New Zealand 2013). 46

Domestic   E-waste  generated  in  Oceania 0 to 6 kg / inh. 6 to 18 kg / inh. 18 + kg / inh. Legend

48

49 6. O ortunities  or  e-waste Re y able materials in e-waste are  aluable  se ondary resour es  and this  urban mine  needs  to be e lored by e ient and en ironmental  system. In the meantime  to i  materials in e-waste  are harm ul to the en ironment  and this  to i   mine  needs to be ta en  are o  by  ro er handlin   system as well. 

PP, ABS, PC, PS Iron, Steel (Fe)Copper (Cu)Aluminum (Al)Precious Metals Gold  (Au)  Silver  (Ag)  Palladium  (Pd) 8,600 16,500 1,900 220 0.31.00.1 12,300 Material Kilotons Million Euros 9,000 10,600 3,200 10,400 580 1,800 EEE  contains  various  materials  including hazardous, valuable and scarce metals. Common hazardous materials found in e-waste are: heavy metals (such as mercury, lead, cadmium etc.) and  hazardous  materials,  e-waste  also  contains many valuable materials (such as iron, copper, aluminium  and  plastics)  and  precious  metals (like  gold,  silver,  platinum  and  palladium)  that can be recycled. In fact, up to 60 elements from the  periodic  table  can  be  found  in  complex electronics, and many of them are recoverable,  though  it  is  not  always  economic  to  do  so presently.   From  the  resource  perspective,  e-waste  is  a potential  “urban  mine”  that  could  provide a  great  amount  of  secondary  resources  for remanufacture,  refurbishment  and  recycling. For  instance,  the  gold  content  from  e-waste  in 2014  is  roughly  300  tonnes,  which  represents 11 per cent of the global gold production from mines  in  2013  (2770  tonnes)  (USGS  2014). Recovery  of  such  valuable  materials  requires    50

Mercury, Cadmium, ChromiumLeadLead glass -  2,200 kilotons Batteries -  300 kilotons Poly- / Brominated Flame Retardants in PlasticsPhosphorsPCBs/A Polychlorinated biphenyl (old capacitors)Hexavalent chromium (PVV)Ozone depleting substances (CFCs, HCFC, HFC, HCs) -  4.4 kilotons Potential   Health   Effects Carcinogens released into the air cause lung damage Kidney Damage Liver Damage Impaired Mental Development resources through this “urban mine”, the e-waste stream needs to be diverted to the formal take-back  systems  (Disposal  Scenario  1,  Section 4.1) and avoid entering other channels such as dustbins  (Disposal  Scenario  2,  Section  4.2)  or substandard  recycling  (particularly,  Disposal Scenario  4,  Section  4.4),  because  valuable materials  are  easily  lost  due  to  imperfect separation and treatment practices.  In  order  to  exploit  the  opportunities  and simultaneously mitigate pollution, good policies  are  needed  that  facilitate  the  creation  of  an infrastructure, ensure that all collected e-waste is  treated  using  state-of-the-art  technologies and  that  green  employment  opportunities  are created.   51

52

53 7. Re eren es

AEHA (2013). Home Appliance Recycling, 2013 Annual  Report,  Association  for  Electric  Home Appliances (AEHA Japan). Africa  Institute  (2012).  Hazardous  waste inventory  report  for  Mauritius,  The  Africa Institute  for  the  environmentally  sound management of hazardous and other waste. Anthouli,  A.,  K.,  Aravossis,  R.,  Charitopoulou, B.,  Tot  and  G.,  Vujic  (2013).  Opportunities  & barriers  of  recycling  in  Balkan  countries:  the cases of Greece and Serbia. HSWMA & SeSWA.  Australian  government  (2014).  National Television  and  Computer  Recycling  Scheme, Department of the Environment. Australian government (2014). National Waste Policy, Implementation Report 2012 and 2013, Department of the Environment. Avfall Sverige AB (2013). HusHållsavfall i siffror -  Kommun-  ocH  länsstatistiK  2012.  Malmö, Sweden, Avfall Sverige. Baldé, C. P., J. Huisman, F. Wang and L. Herreras (2014). WEEE Market Assessment, Deliverable 4.2  of  Countering  WEEE  illegal  Trade  Project (Internal document), United Nations University. Baldé, C. P., R. Kuehr, K. Blumenthal, S. F. Gill, J. Huisman, M. Kern, P. Micheli and E. Magpantay (2015).  E-waste  statistics:  Guidelines  on  Germany,  United  Nations  University,  IAS  - SCYCLE. Bigum, M., C. Petersen, T. H. Christensen and C. Scheutz  (2013).  “WEEE  and  portable  batteries  characterisation  of  misplaced  waste.”  Waste Management 33(11): 2372-2380. Duan, H. Miller, T.R. Gregory, J. Kirchain, R. (2013) Quantitative  Characterization  of  Domestic  and Transboundary  Flows  of  Used  Electronics, Analysis of Generation, Collection, and Export in  the United States. MIT, 2013 Dvoršak, S., J. Varga, V. Brumec and V. Inglezakis (2011).  Municipal  Solid  Waste  Composition  in Romania and Bulgaria. Maribor, Slovenia. Electronics  TakeBack  Coalition.  (2014).  “State Legislation  (on  e-waste  in  the  United  States).” from  http://www.electronicstakeback.com/ promote-good-laws/state-legislation/. European Union (2012). Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic  the European Union L 197. Volume 55. Government  of  New  Zealand.  (2013).  “How to  dispose  and  recycle  electronic  waste responsibly.”  from  http://www.mfe.govt.nz/waste/types-waste/e-waste/how-dispose-and-recycle-e-waste-responsibly. Huisman, J., M. van de Maesen, R. J. J. Eijsbouts, F. Wang, C. P. Baldé and C. A. Wielenga (2012). The Dutch WEEE Flows. Bonn, Germany, United Nations University, ISP-SCYCLE. LfU  (2012).  Restmuellzusammensetzung  in phasing  out  gebieten,  Bayerisches  landesambt fuer Umwelt  Magalini, F., J. Huisman, F. Wang, R. Mosconi, A. Gobbi, M. Manzoni, N. Pagnoncelli, G. Scarcella, A.  Alemanno  and  I.  Monti  (2012).  Household WEEE Generated in Italy, Analyis on volumes & Consumer Disposal Behavior for Waste Electric and  Electronic  Equipment.  Bonn,  Germany, United Nations University. Magalini,  F.,  F.  Wang,  J.  Huisman,  R.  Kuehr, K.  Baldé,  V.  v.  Straalen,  M.  Hestin,  L.  Lecerf, U.  Sayman  and  O.  Akpulat  (2014).  Study  on collection rates of waste electrical and electronic equipment (WEEE) Preliminary version, subject  Manhart,  A.,  T.  Amera  and  M.  Belay  (2013).  References 54

Solving the E-Waste Problem (Step) Green Paper, E-waste Country Study Ethiopia. Bonn, Germany, Solving the E-Waste Problem Initiative. Monier, V., M. Hestin, A. Chanoine, F. Witte and  of waste of electrical and electronic equipment (WEEE) in France, BIO Intelligence Service S.A.S. Moora,  H.  (2013).  Eestis  tekkinud  segaolmejäätmete,  eraldi  kogutud  paberi- ja  pakendijäätmete  ning  elektroonikaromu koostise  uuring  (Sampling  and  analysis  of  the composition  of  mixed  municipal  waste,  source separated  paper  waste,  packaging  waste  and WEEE  generated  in  Estonia),  SEI  Tallinna väljaanne. Ogungbuyi, O., I. C. Nnorom, O. Osibanjo and M. Schluep  (2012).  e-Waste  Country  Assessment Nigeria, e-Waste Africa project of the Secretariat of the Basel Convention. Reuter,  M.  A.,  C.  Hudson,  A.  van  Schaik,  K. Heiskanen,  C.  Meskers  and  C.  Hagelüken (2013). Metal  Recycling: Opportunities, Limits, Infrastructure,  A  Report  of  the  Working  Group on the Global Metal Flows to the International Resource  Panel.  Paris,  France,  United  Nations Environment Programme. Steiger,  U.  (2012).  Erhebung  der  Kehrichtzusammensetzung  2012,  Bundesamt für Umwelt (BAFU). Step  Initiative  (2014).  Solving  the  E-Waste Problem  (Step)  White  Paper,  One  Global  UEC  (2013).  Hausmullmenge  und  mausmullzesammensetzung  in  der  Freien  und Hansestadt Hamburg. Berlin, Germany, Umwelt- und Energie-Consult GmbH (UEC). US  EPA  (2014).  Municipal  Solid  Waste Generation,  Recycling,  and  Disposal  in  the United States Tables and Figures for 2012, U.S.  Resource Conservation and Recovery. USGS  (2014).  U.S.  Geological  Survey,  Mineral Commodity  Summaries,  U.S.  Geological  Survey (USGS). Wang,  F.  (2014).  E-waste:  collect  more,  treat better; Tracking take-back system performance. Doctoral  dissertation,  Delft  University  of Technology. Wang, F., R. Kuehr, D. Ahlquist and J. Li (2013). E-waste  in  China:  a  country  report.  Bonn, Germany, United Nations University. Wielenga, K., J. Huisman and C. P. Baldé (2013). (W)EEE Mass balance  and market structure in Belgium,  study  for  Recupel,  Brussels,  Belgium, Recupel. WRAP  (2012).  Market  Flows  of  Electronic  Products & WEEE Materials, A model to estimate EEE products placed on the market and coming  for  2009-2020.,  Waste  &  Resources  Action Programme (WRAP). 55

56

57 8. About the authors

Feng Wang joined UNU in 2009 to work on a variety of waste-related research projects, capacity building activities and international cooperation. Feng led the  infrastructure for e-waste in developing countries. He has also involved in a  Belgium  and  China).  His  recent  work  involves  research  projects  to  provide policy  suggestions  to  the  European  Commission  on  the  Recast  of  WEEE Directive,  as  well  as  quantifying  the  global  e-waste  generation.  Feng  Wang holds a PhD in e-waste management from Delft University of Technology.  Since  2012  Kees  Baldé  has  served  as  a  consultant  to  the  United  Nations University’s Institute for the Advanced Study of Sustainability. He is also head of  waste  statistics  as  part  of  the  environmental  statistics  team  at  Statistics Netherlands where he represents the Netherlands at international meetings. Kees initiated and was a key contributor to the 2011 report on Green Growth in  the  Netherlands.    His  work  has  led  to  the  development  of  a  common methodology  for  the  recast  of  the  European  Union’s  Waste  Electrical  and Electronic  Equipment  (WEEE)  Directive,  a  detailed  assessment  of  the  fate of e-waste in various European countries and setting guidelines to measure e-waste statistics in the context of the UN Partnership of measuring ICT for Development. Kees Holds a PhD in chemistry from Utrecht University. Feng  wang Kees  balde the IAS SCYCLE Electronics Recycling Group. He steers various international projects  to  quantify  the  e-waste  amounts  and  problems  worldwide  in cooperation  with  key  research  institutes  and  universities.  In  the  past,  he has  served  as  the  lead  author  of  the  UNU  study  supporting  the  European Commission’s  2008  Review  of  the  EU  WEEE  Directive  and  the  advanced  coordinator of the FP7 project CWIT: “Countering WEEE Illegal Trade” and the  H2020  project  ProSUM:  Prospecting  Secondary  raw  materials  in  the Urban  Mine.  He  holds  a  PhD  from  Delft  University  of  Technology  on  eco- responsibilities, he is an associate professor at Delft University of Technology.  Jaco Huisman About  the  authors 58

Ruediger  Kuehr  heads  UNU-IAS  Operating  Unit  SCYCLE,  which  is  focusing its work and activities on sustainable production, consumption and disposal ever  since  the  establishment  of  the  Institute  for  the  Advanced  Study  of Sustainability  (UNU-IAS).  Since  2007  Ruediger  has  also  functioned  as  the Executive  Secretary  of  the  Solving  the  E-Waste  Problem  (Step)  Initiative, which aims to initiate and develop just and environmentally-safe solutions to the e-waste problem. He  served  as  Senior  R&D  Specialist  with  The  Natural  Step  in  Sweden and  as  a  freelance  policy-consultant  to  various  national  governments, international  organizations  and  companies.  He  was  a  visiting  fellow  to the  Free  University  of  Berlin  (Germany)  and  the  Hitotsubashi  University (Japan), a Research Associate to the Japan Research Centre of the University of Osnabrück (Germany), and a freelance writer for some large weekly and daily newspapers. Ruediger Kuehr is a member of a number of national and international  Steering  and  Expert  Committees  and  a  regular  reviewer  for  Kuehr is political and social scientist by education with a PhD (Dr. rer. pol.) from the University of Osnabrück (Germany) and an MA (Magister Artium) from  the  University  of  Münster,  (Germany),  as  well  as  additional  post-graduate studies in Tokyo (Japan). Ruediger Kuehr  jennifer  wong (  Designer  ) Jennifer Wong is a recently graduated design researcher from Delft University of Technology with a background in architecture and communication design. Jennifer  now  runs  her  own  research  and  design  consultancy  focusing  on designing  for  an  environmentally,  economically,  and  socially  sustainable urban future. Her most recent project was the design of a children’s game to stimulate awarenes of air quality and pollution levels in the Rijnmond area. Her work focuses on the development of designs, strategies, and communication tools  that  stem  from  deep  rooted  research  through  a  variety  of  mediums. Although  the  company  is  still  young  and  growing  in  the  Netherlands,  she hopes to expand her work on an international scale to cross boundaries and bring more holistic solutions in the near future. 59

60

61 9. A endi

Continent Region Name kg/inh. kt National  Regulation in force till  2013 population  (1000) Africa Eastern Africa Burundi 0.2 2 no 9201 Africa Eastern Africa Comoros 0.7 1 no 724 Africa Eastern Africa Djibouti 1.2 1 no 939 Africa Eastern Africa Eritrea 0.3 2 no 6000 Africa Eastern Africa Ethiopia 0.5 43 no 90982 Africa Eastern Africa Kenya 1.0 44 no 44572 Africa Eastern Africa Madagascar 0.3 6 no 23537 Africa Eastern Africa Malawi 0.2 4 no 17604 Africa Eastern Africa Mauritius 9.3 12 no 1309 Africa Eastern Africa Mozambique 0.7 16 no 23365 Africa Eastern Africa Rwanda 0.6 6 Wno 10865 Africa Eastern Africa Seychelles 10.9 1 no 94 Africa Eastern Africa Uganda 0.9 33 yes 38040 Africa Eastern Africa United Repub-lic of Tanzania 0.5 26 no 49047 Africa Eastern Africa Zambia 0.9 13 no 14617 Africa Eastern Africa Zimbabwe 0.3 4 no 13260 Africa Middle Africa Angola 3.0 65 no 21444 Africa Middle Africa Cameroon 0.9 21 yes 22544 Africa Middle Africa Central African Republic 0.3 1 no 5109 Africa Middle Africa Chad 0.8 9 no 11284 Africa Middle Africa Congo 2.5 11 no 4274 Africa Middle Africa Democratic Republic of the Congo 0.2 17 no 79301 Africa Middle Africa Equatorial Guinea 10.8 8 no 785 Africa Middle Africa Gabon 7.6 12 no 1586 Africa Middle Africa Sao Tome and Principe 1.2 0 no 179 Africa Northern Africa Algeria 4.9 183 no 37597 Africa Northern Africa Egypt 4.3 373 no 85833 Africa Northern Africa Libya 8.3 55 no 6649 Africa Northern Africa Morocco 3.7 121 no 33179 Africa Northern Africa Sudan 1.2 43 no 35276 Africa Northern Africa Tunisia 5.0 56 no 11060 Annex 1 :  Domestic  E-waste  generated  per  country  in  2014 62

Africa Southern Africa Botswana 8.3 16 no 1920 Africa Southern Africa Lesotho 0.9 2 no 1911 Africa Southern Africa Namibia 5.0 11 no 2192 Africa Southern Africa South Africa 6.6 346 no 52433 Africa Southern Africa Swaziland 4.0 4 no 1106 Africa Western Africa Benin 0.9 8 no 9858 Africa Western Africa Burkina Faso 0.6 11 no 18166 Africa Western Africa Cape Verde 2.0 1 no 542 Africa Western Africa Côte d'Ivoire 0.8 20 no 24791 Africa Western Africa Gambia 1.2 2 no 1927 Africa Western Africa Ghana 1.4 38 no 26216 Africa Western Africa Guinea 0.8 9 no 11403 Africa Western Africa Guinea-Bissau 0.5 1 no 1646 Africa Western Africa Liberia 0.2 1 no 4187 Africa Western Africa Mali 0.6 10 no 17379 Africa Western Africa Mauritania 0.9 4 no 3804 Africa Western Africa Niger 0.2 4 no 17116 Africa Western Africa Nigeria 1.3 219 yes 173938 Africa Western Africa Senegal 0.9 12 no 13830 Africa Western Africa Sierra Leone 0.4 2 no 6481 Africa Western Africa Togo 0.8 5 no 6587 Americas Caribbean Antigua and Barbuda 11.6 1 no 88 Americas Caribbean Bahamas 19.1 7 no 360 Americas Caribbean Barbados 13.2 4 no 279 Americas Caribbean Dominica 9.7 1 no 71 Americas Caribbean Dominican Republic 5.4 58 no 10610 Americas Caribbean Grenada 10.0 1 no 106 Americas Caribbean Haiti 0.6 6 no 10470 Americas Caribbean Jamaica 5.8 16 no 2774 Americas Caribbean Saint Kitts and Nevis 10.1 1 no 60 Americas Caribbean Saint Lucia 9.9 2 no 170 Americas Caribbean Saint Vincent and the Grena-dines 9.7 1 no 110 Americas Caribbean Trinidad and Tobago 9.0 12 no 1341 Americas Central America Belize 6.5 2 no 355 Americas Central America Costa Rica 7.5 36 yes 4770 63

Americas Central America El Salvador 4.8 30 no 6282 Americas Central America Guatemala 3.5 55 no 15870 Americas Central America Honduras 1.8 16 no 8546 Americas Central America Mexico 8.2 958 no 117181 Americas Central America Nicaragua 1.7 11 no 6165 Americas Central America Panama 8.2 31 no 3788 Americas Northern Amer-ica Canada 20.4 725  no 35538 Americas Northern Amer-ica United States of America 22.1 7072 no 319701 Americas South America Argentina 7.0 292 no 41961 Americas South America Bolivia (Pluri-national State of) 4.0 45 yes 11246 Americas South America Brazil 7.0 1412 no 201413 Americas South America Chile 9.9 176 no 17711 Americas South America Colombia 5.3 252 yes 47711 Americas South America Ecuador 4.6 73 yes 15699 Americas South America Guyana 6.1 5 no 780 Americas South America Paraguay 4.9 34 no 6930 Americas South America Peru 4.7 148 yes 31424 Americas South America Suriname 8.5 5 no 560 Americas South America Uruguay 9.5 32 no 3404 Americas South America Venezuela (Bolivarian Republic of) 7.6 233 no 30457 Asia Central Asia Kazakhstan 7.7 131 no 17019 Asia Central Asia Kyrgyzstan 1.2 7 no 5700 Asia Central Asia Tajikistan 0.8 7 no 8302 Asia Central Asia Turkmenistan 3.9 22 no 5796 Asia Central Asia Uzbekistan 1.5 45 no 30160 Asia Eastern Asia China 4.4 6033 yes 1367520 Asia Eastern Asia China, Hong Kong Special Administrative Region  1 21.5 157 yes 7296 Asia Eastern Asia Japan 17.3 2200 yes 127061 Asia Eastern Asia Mongolia 1.8 5 no 2914 Asia Eastern Asia Republic of Korea 15.9 804 yes 50475 Asia Eastern Asia Taiwan  2 18.6 438  - 23499 1. Due to the different characteristics of Hong Kong and data availability, this region has been investigated separately2. Due to the different characteristics of Taiwan and data availability, this region has been investigated separately 64

Asia South-Eastern Asia Brunei Darus-salam 18.1 7 no 411 Asia South-Eastern Asia Cambodia 1.0 16 no 15561 Asia South-Eastern Asia Indonesia 3.0 745 no 251490 Asia South-Eastern Asia Lao People's Democratic Republic 1.2 8 no 6557 Asia South-Eastern Asia Malaysia 7.6 232 no 30467 Asia South-Eastern Asia Myanmar 0.4 29 no 66257 Asia South-Eastern Asia Philippines 1.3 127 no 99434 Asia South-Eastern Asia Singapore 19.6 110 no 5595 Asia South-Eastern Asia Thailand 6.4 419 no 64945 Asia South-Eastern Asia Timor-Leste 4.1 5 no 1172 Asia South-Eastern Asia Viet Nam 1.3 116 yes 92571 Asia Southern Asia Afghanistan 0.3 9 no 33967 Asia Southern Asia Bangladesh 0.8 126 no 153257 Asia Southern Asia Bhutan 3.7 3 yes 746 Asia Southern Asia India 1.3 1641 no 1255565 Asia Southern Asia Iran (Islamic Republic of) 7.4 581 no 78089 Asia Southern Asia Maldives 6.1 2 no 342 Asia Southern Asia Nepal 0.5 15 no 32010 Asia Southern Asia Pakistan 1.4 266 no 186279 Asia Southern Asia Sri Lanka 4.2 87 no 20964 Asia Western Asia Armenia 4.6 16 no 3433 Asia Western Asia Azerbaijan 5.1 48 no 9383 Asia Western Asia Bahrain 12.9 16 no 1198 Asia Western Asia Cyprus 16.3 14 yes 876 Asia Western Asia Georgia 4.6 21 no 4531 Asia Western Asia Iraq 3.1 112 yes 35871 Asia Western Asia Israel 17.2 138 no 8040 Asia Western Asia Jordan 4.5 30 no 6694 Asia Western Asia Kuwait 17.2 69 no 3999 65

Asia Western Asia Lebanon 9.4 39 no 4115 Asia Western Asia Oman 14.0 46 no 3288 Asia Western Asia Qatar 16.3 33 no 1989 Asia Western Asia Saudi Arabia 12.5 379 no 30254 Asia Western Asia Syrian Arab Republic no Asia Western Asia Turkey 6.5 503 yes 76707 Asia Western Asia United Arab Emirates 17.2 101 no 5873 Asia Western Asia Yemen 1.2 34 no 27460 Europe Eastern Europe Belarus 7.7 72 no 9293 Europe Eastern Europe Bulgaria 10.7 77 yes 7146 Europe Eastern Europe Czech Repub-lic 14.8 157 yes 10594 Europe Eastern Europe Hungary 12.6 125 yes 9922 Europe Eastern Europe Poland 10.0 397 yes 39638 Europe Eastern Europe Republic of Moldova 1.8 6 no 3553 Europe Eastern Europe Romania 9.2 197 yes 21266 Europe Eastern Europe Russian Feder-ation 8.7 1231 no 140955 Europe Eastern Europe Slovakia 11.4 62 yes 5447 Europe Eastern Europe Ukraine 5.7 258 no 45000 Europe Northern Europe Denmark 24.0 135 yes 5610 Europe Northern Europe Estonia 14.0 19 yes 1340 Europe Northern Europe Finland 21.4 118 yes 5476 Europe Northern Europe Iceland 26.0 9 yes 331 Europe Northern Europe Ireland 19.8 92 yes 4641 Europe Northern Europe Latvia 10.7 22 yes 2030 Europe Northern Europe Lithuania 11.4 34 yes 2970 Europe Northern Europe Norway 28.3 146 yes 5150 Europe Northern Europe Sweden 22.2 215 yes 9655 Europe Northern Europe United King-dom of Great Britain and Northern Ireland 23.5 1511 yes 64271 Europe Southern Europe Albania 6.1 20 no 3275 Europe Southern Europe Bosnia and Herzegovina 5.3 21 yes 3871 Europe Southern Europe Croatia 10.8 48 yes 4402 Europe Southern Europe Greece 15.1 171 yes 11242 66

Europe Southern Europe Italy 17.6 1077 yes 61156 Europe Southern Europe Malta 14.6 6 yes 418 Europe Southern Europe Montenegro 7.1 4 yes 626 Europe Southern Europe Portugal 16.1 171 yes 10569 Europe Southern Europe Serbia 7.3 56 yes 7566 Europe Southern Europe Slovenia 15.0 31 yes 2066 Europe Southern Europe Spain 17.7 817 yes 45995 Europe Southern Europe The former Yugoslav Republic of Macedonia 6.1 13 yes 2076 Europe Western Europe Austria 22.0 188 yes 8520 Europe Western Europe Belgium 21.4 242 yes 11260 Europe Western Europe France 22.1 1419 yes 63996 Europe Western Europe Germany 21.6 1769 yes 81589 Europe Western Europe Luxembourg 21.0 12 yes 550 Europe Western Europe Netherlands 23.3 394 yes 16861 Europe Western Europe Switzerland 26.3 213 yes 8098 Oceania Australia and New Zealand Australia 20.0 468 yes 23339 Oceania Australia and New Zealand New Zealand 19.0 86 no 4510 Oceania Melanesia Fiji 3.3 3 no 908 Oceania Melanesia Papua New Guinea 1.1 8 no 7172 Oceania Melanesia Solomon Islands 1.6 0.95 no 592 Oceania Melanesia Vanuatu 2.9 0.78 no 262 Oceania Micronesia Kiribati 3.9 0.43 no 108 Oceania Micronesia Marshall Islands 5.5 0.32 no 58 Oceania Micronesia Micronesia (Federated States of) 5.4 0.56 no 103 Oceania Polynesia Samoa 4.0 0.76 no 185 Oceania Polynesia Tongata 5.4 0.58 no 105 Oceania Polynesia Tuvalu 1.7 0.02 no 11 67

Annex 2 : E-waste  collection  data  from  official  take-back  systems Continent Country/region Collection (kt) Year Source Europe Belgium 116 2012 Eurostat Bulgaria 38 2012 Eurostat Czech Republic 54 2012 Eurostat Denmark 76 2012 Eurostat Germany  691 2012 Eurostat Estonia 5.5 2012 Eurostat Ireland 41 2012 Eurostat Greece 47 2010 Eurostat Spain 158 2010 Eurostat France 434 2010 Eurostat Croatia 16 2012 Eurostat Italy 231 2012 Eurostat Cyprus 2.6 2010 Eurostat Latvia 4.7 2012 Eurostat Lithuania 14 2012 Eurostat Luxembourg 5.0 2012 Eurostat Hungary 44 2012 Eurostat Malta 1.5 2012 Eurostat Netherlands 128 2010 Eurostat Austria 77 2012 Eurostat Poland 175 2012 Eurostat Portugal 40 2012 Eurostat Romania 26 2010 Eurostat Slovenia 9 2012 Eurostat Slovakia 23 2012 Eurostat Finland 53 2012 Eurostat Sweden 169 2012 Eurostat United Kingdom 504 2012 Eurostat Iceland 1.6 2010 Eurostat Liechtenstein 0.1 2012 Eurostat Norway 105 2012 Eurostat Switzerland 129 2012 EMPA America Canada 122 2013 Electronic Products Recycling Associa-tion; Ontario Elec-tronic Stewardship United States 1000 2012 US EPA 68

Continent Country/region Collection (kt) Year Source Asia China 1290 2013 China Ministry of Environment Hong Kong 55.8 2013 Hong Kong EPD Japan 511 2011 Japan AEHA Oceania Australia 41  2012 Australian Ministry of Environment Africa Mauritius 2 2011 Africa Institute 2012 69

Country   Year   kg/inh. kt Source Belgium 2010 1.53 17 (Wielenga et al. 2013) Bulgaria 2010 0.00 0 (Dvoršak et al. 2011) Czech Republic 2010 2.32 24 PhD thesis M. Polak, to be published Denmark 2010 0.63 3 (Bigum et al. 2013) Estonia 2011 3.76 5 (Moora 2013) France 2007 1.00 62 (Monier et al. 2013) Germany 2012 1.40 114 (LfU 2012), (UEC 2013) Great Britain 2010 6.33 394 (WRAP 2012) Italy 2012 1.01 61 (Magalini et al. 2012) Luxemburg 2012 1.15 0.6 Personal communica-tion to B. Mottet, CEO from Ecotrel. Netherlands 2010 2.30 38 (Huisman et al. 2012) Portugal 2007 1.51 16 Personal communica-tion via FP-7 Project Countering –Waste Illegal Trade Project Romania 2009 0.39 8 (Dvoršak et al. 2011) Spain 2010 0.98 45 (Reuter et al. 2013) Sweden  2010 1.23 12 (Avfall Sverige AB 2013)  Switzerland 2012 1.25 10 (Steiger 2012) Annex 3 : Data  of  e-waste  disposal  in  mixed  residual  waste 70

UNU KEY Description Collection category 0001 Central Heating (household installed) Large equipment 0002 Photovoltaic Panels (incl. converters) Large equipment 0101 Professional Heating & Ventilation (excl. cooling equipment) Large equipment 0102 Dishwashers Large equipment 0103 Kitchen (f.i. large furnaces, ovens, cooking equipment) Large equipment 0104 Washing Machines (incl. combined dryers) Large equipment 0105 Dryers (wash dryers, centrifuges) Large equipment 0106 Household Heating & Ventilation (f.i. hoods, ventilators, space heaters) Large equipment 0108 Fridges (incl. combi-fridges) Cooling and Freezing 0109 Freezers Cooling and Freezing 0111 Air Conditioners (household installed and portable) Cooling and Freezing 0112 Cooling and Freezing 0113 Professional Cooling (f.i. large air conditioners, cooling displays) Cooling and Freezing 0114 Microwaves (incl. combined, excl. grills) Small equipment 0201 Other Small Household (f.i. small ventilators, irons, clocks, adapt-ers) Small equipment 0202 Food (f.i. toaster, grills, food processing, frying pans) Small equipment 0203 Hot Water (f.i. coffee, tea, water cookers) Small equipment 0204 Vacuum Cleaners (excl. professional) Small equipment 0205 Personal Care (f.i. tooth brushes, hair dryers, razors) Small equipment 0301 Small IT (f.i. routers, mice, keyboards, external drives & accesso-ries) Small IT 0302 Desktop PCs (excl. monitors, accessoires) Small IT 0303 Laptops (incl. tablets) Screens 0304 Printers (f.i. scanners, multi-functionals, faxes) Small IT 0305 Telecom (f.i. (cordless) phones, answering machines) Small IT 0306 Mobile Phones (incl. smartphones, pagers) Small IT 0307 Professional IT (f.i. servers, routers, data storage, copiers) Large equipment 0308 Cathode Ray Tube Monitors Screens 0309 Flat Display Panel Monitors (LCD, LED) Screens 0401 Small Consumer Electronics (f.i. headphones, remote controls) Small equipment 0402 Portable Audio & Video (f.i. MP3, e-readers, car navigation) Small equipment 0403 Music Instruments, Radio, Hi-Fi (incl. audio sets) Small equipment 0404 Video (f.i. Video recorders, DVD, Blue Ray, set-top boxes) Small equipment 0405 Speakers Small equipment 0406 Cameras (f.i. camcorders, photo & digital still cameras) Small equipment Annex 4 : Classification of electrical and electronic equipment and e-waste (UNU-KEYs) 71

UNU KEY Description Collection category 0407 Cathode Ray Tube TVs Screens 0408 Flat Display Panel TVs (LCD, LED, Plasma) Screens 0501 Lamps (f.i. pocket, Christmas, excl. LED & incandescent) Lamps 0502 Lamps 0503 Straight Tube Fluorescent Lamps Lamps 0504 Special Lamps (f.i. professional mercury, high & low pressure sodium) Lamps 0505 - naires) Lamps 0506 Small equipment 0507 Small equipment 0601 Household Tools (f.i. drills, saws, high pressure cleaners, lawn mowers) Small equipment 0602 Professional Tools (f.i. for welding, soldering, milling) Large equipment 0701 Toys (f.i. car racing sets, electric trains, music toys, biking com-puters) Small equipment 0702 Game Consoles Small IT 0703 Leisure (f.i. large exercise, sports equipment) Large equipment 0801 Household Medical (f.i. thermometers, blood pressure meters) Small equipment 0802 Professional Medical (f.i. hospital, dentist, diagnostics) Large equipment 0901 Household Monitoring & Control (alarm, heat, smoke, excl. screens) Small equipment 0902 Professional Monitoring & Control (f.i. laboratory, control pan-els) Large equipment 1001 Non Cooled Dispensers (f.i. for vending, hot drinks, tickets, mon-ey) Large equipment 1002 Cooled Dispensers (f.i. for vending, cold drinks) Cooling and Freezing 72

73

74 Photo Credit: HPP GmbH

75 10. About UNU-IAS-SCYCLE

Image of E-waste Academy - Science Edition 2009(Photo credit: Gerad van Bree) 76

United Nations University (UNU) The United Nations University is an international community of scholars engaged in research, postgraduate training and the dissemination of knowledge in furtherance of the purposes and principles of the United Nations, its Peoples and Member States. The University functions as a think tank for the United Nations system, contributes to capacity building, particularly in developing countries, and serves as a platform for new and innovative ideas and dialogue. UNU Institute for the Advanced Study of Sustainability (UNU-IAS) UNU-IAS is a new UNU institute, created in January 2014 by consolidating the former UNU Institute of Advanced Studies and UNU Institute for Sustainability and Peace (UNU-ISP). It is based at UNU Headquarters in Tokyo. The mission of UNU-IAS is to serve the international community through policy-relevant research and capacity development focused on sustainability, including its social, economic and environmental dimensions. UNU-IAS applies advanced research methodologies and innovative approaches to challenge conventional thinking and develop creative solutions to emerging issues of global concern in these areas. The institute’s research, education and training combine expertise from a wide range of areas related to sustainability, and engage a global network of scholars and partner institutions. Through postgraduate teaching UNU-IAS develops international leaders with the interdisciplinary understanding and technical skills needed to advance creative solutions to problems of sustainability. UNU-IAS Operating Unit Sustainable Cycles (UNU-IAS-SCYCLE)  UNU-IAS-SCYCLE is an operating unit of UNU-IAS based in Bonn, Germany. Its activities are focused on the development of sustainable production, consumption and disposal scenarios for electrical and electronic equipment, as well as other ubiquitous goods. SCYCLE leads the global e-waste discussion and advances sustainable e-waste management strategies based on life-cycle thinking. Within this context UNU-IAS-SCYCLE: •  conducts research on eco-structuring towards sustainable societies;•  develops interdisciplinary and multi-stakeholder public-private partnerships;•  assists governments in developing e-waste legislation and standards, meeting a growing need for such support;•  undertakes education, training and capacity development; and•  facilitates and disseminates practical, science-based recommendations to the United Nations and its agencies, governments, scholars, industry and the public. ABOUT  unu-ias-scycle 77

US-EPA China partnership - 2013 WEEE Country Studies: The Netherlands (2011), Italy  (2012), Belgium (2013), France  (2013), Portugal (2014) Step Initiative (Solving the e-waste problem initiative) EWAM 2014, El Salvador EWAM 2012 , Ghana (E-waste training to OEMs,  recyclers and policy makers) EWAS 2009 (E-waste training and  summer school to researchers EWAS 2010, EWAS 2011 (Eindhoven, Antwerp, Davos) Worldwide e-waste  work  of  unu-ias-scycle 78

US-EPA China partnership - 2013 EWAS 2014, Shanghai The Best of Two Worlds  (2007 - 2011) EWAS 2013, Geneva Ethiopian E-waste Management Project (EwaMP) 2013 - 2015 EUROPE- H2020 project: Prospecting Secondary Raw Materials in the Urban Mine and mining waste (ProSUM) project - 2015 - 2017- Policy advisory on the article 11 of WEEE Directive - 2014 - 2015- Policy advisory on the article 7 of  WEEE Directive - 2014- FP-7 Project on Countering WEEE Illegal Trade - 2013 - 2015- Development of Standards for e-waste management - 2009 - 2010- WEEE Review Study - 2008 E-waste Management in Germany (co-operation with Mexico) Co-operation with Japan’s Ministry of Environment - 2014 79

United Nations UniversityInstitute for the Advanced Study of SustainabilityOperating Unit SCYCLEPlatz der Vereinten Nationen 153113 Bonn, Germany